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Two interesting linear relations between normal vorticity and current density 
generated behind a shock wave in three-dimensional unsteady flows of conducting 
gases have been investigated in order to determine them purely from dynamical 
considerations. Some interesting physical conclusions have also been made. 

1. Introduction 
Vorticity generated behind a shock wave has been a subject of interest dis- 

cussed by several authors. Truesdell (1952) concluded for plane shocks in ordin- 
ary gasdynamics that vorticity generated by a shock of given strength and curvature 
depends only on the magnitude of the tangential components of velocity and is  inde- 
pendent of the form of the equation of state. Lighthill (1957) derived an expression 
for the vorticity generated behind a shock in steady flows of gases obeying an 
arbitrary equation of state. In accordance with Truesdell’s statement Hayes 
(1957) provided a proof based on the momentum equation alone for the deriva- 
tion of vorticity jump across a gasdynamic discontinuity. For planar shocks in 
stationary flows of an ideal conducting gas Kanwal (1960a) concluded that 
vorticity generated behind a shock in conducting gases i s  no longer derivable purely 
from dynamical relations as in non-conducting gases. Ram (1967) extended this 
result to the general case of unsteady flows of conducting gases by employing an 
easier method. Ram & Mishra (1966) derived the normal vorticity and current 
density behind a magnetogasdynamic shock wave purely from dynamical con- 
siderations in the case of pseudo-stationary flows. The present paper generalizes 
this to the case of unsteady flows of conducting gases. 

Let the shock configuration in 3-dimensional unsteady flows be represented by 
continuously differentiable functions xi = xi(ya, t) ,? where xi are the rectangular 
Cartesian co-ordinates of a point P on the shock surface and ya are the Gaussian 
co-ordinates of P. Let G be the speed of the shock and Ni be the components of the 
unit normal to the shock surface directed downstream. Let [f] denote the jump 
in the quantity enclosed as it crosses the shock, i.e. [f] = f -fi, where f and fi are 

t In  this and in what follows the range of Latin indices is 1, 2, 3 and that of Greek 
indices is I, 11. A repeated index implies summation unless stated otherwise. 
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values off just behind and just ahead of the shock respectively. Then, the shock 
conditions derived by Kanwal(l960 b)  in the case of unsteady flows of conducting 
gases are 

[PKII = 0, (1) 

[Hn,1 = 0, (2) 

dei 
where = ui-Gh$, = Eh$, Hn/ 2 Hi&, h = ~ + p / p ,  

and all other symbols have their usual meanings. 
Let us define the density-strength 6 of the shock by 

6 = [Pl/P,. 
In  consequence of (6), ( l) ,  (3) and (4) we have 

where 

2. Normal vorticity and current density 
For simplicity, we assume that the flow upstream from the shock is uniform 

and known and the lines of curvature are the Gaussian co-ordinate curves on the 
shock surface. 

By virtue of Weingarten's formula (Eisenhart 1947) for the derivative of Ni, 
we get 

where K ,  are normal curvatures of the shock surface and a comma followed by an 
index denotes partial differentiation with respect to the corresponding co- 
ordinate. 

Normal vorticity and current density just behind the shock surface are given 

%,,a = + G,,), Hl,,, = -h 'a& (aunsummed), (8) 

by wn/ = €"Pup il ( 9) 

and 
1 

457 Jn, = - empH,, a 

respectively, where cap are the components of permutation tensor of the shock 
surface. 

Multiplying (3) and (4 )  by xi!, we get 
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Differentiating (1 1) and (12) partially with respect to ya and making use of (7))  

(13) (9) and (lo), we get 
pV,,w,,-f - Hni Jn, = &'Yaly, 

and 4nQ Jn/ - Hn/ wn/ = dZap ,  (14) 

The equations (13) and (14), derived purely from the dynamical relations (3 )  
and (4), provide two linear relations between normal vorticity and current density 
generated behind a magnetogasdynamic shock wave. The shock condition ( 5 )  
due to the law of conservation of energy across the shock is not at  all needed in 
the process and as such the derivation of normal vorticity and current density is 
independent of the form of the equation of state. Thus we conclude the following 
theorem. 

Theorem 1. Normal vorticity and current density generated behind an  oblique 
hydromagnetic shock wave in 3-dimensional unsteady JIows do not depend upon the 
thermodynamical behaviour of the JEuid and can be derived from purely dynamical 
considerations. 

When an electrically conducting fluid flows in a magnetic field, electric currents 
are induced in it. These currents modify the field and the field itself exerts forces 
which modify the flow. If the magnetic permeability p is approximately regarded 
as equal to unity and the displacement currents are ignored, each element of 
the fluid will experience a force L, called Lorentz force, which is proportional to 
the cross product of the current density vector J and the magnetic field vector 
H, i.e. L =  J x H .  (15) 

The components of the current density vector are given by 

If, behind the shock surface, the current density vector coincides with the 

= AH,, (17) magnetic field vector, we have 

where h is proportionality factor. 
Multiplying (17) by Ni we obtain 

Solving (13) and (14) for Jn/ and substituting in (18), we get 
= Jn//Hn/* (18) 

(19) 
Differentiating (17) with respect to x i  and using the facts div J = 0 and 

div H = 0 ,  we get Hih,,i = 0,  

t Indices behind solidus do not obey summation convention. 
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which shows that the proportionality factor h remains constant along the mag- 
netic lines and the Lorentz force is zero. Thus we conclude the following theorem. 

Theorem 2. If behind the shock: surface the current vector coincides with the 
magnetic jield vector, the proportionality factor h given by (19) remains constant 
along magnetic lines and the flow experiences no Lorentz force; conversely, i f  the 
$ow-field behind the shock surface is  Lorentz force free, the current lines coincide 
with magnetic lines and their proportionality factor h is  given by (19). 

Finally, I would like t o  express my gratefulness to Prof. R. S. Mishra and 
Prof. M. J. Lighthill for their encouragement. 
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